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ABSTRACT

    Of the various factors that affect crop yield, soil water-holding capacity is
usually a significant contributor.  Soil electrical conductivity (EC) measurements
in non-saline soils are driven primarily by soil texture and soil moisture.  Those
same factors correlate highly to the soil’s water-holding capacity.  Thus, an EC
map can serve as a proxy for soil water-holding capacity, resulting in soil EC and
yield maps that frequently exhibit similar spatial patterns.  Numerous commercial
EC mapping systems are being used in precision agriculture, and many of the
maps generated by these units are being layered in a GIS with yield data in an
attempt to explain yield variability.  A common tool being employed in yield-EC
analyses is bi-variate linear regression.  While this analysis frequently explains a
larger percentage of yield variability than is explained by other available layers of
soil sample information, it ignores the more complex relationships between soil
physical properties and yield.  Moving to a non-linear curve-fit may improve the
correlation co-efficient but rarely explains more than 50% of the yield variability
within a field.  This paper presents an analysis technique that sorts through the
cloud of yield data points to establish a yield benchmark for each soil EC level.
Further analysis generates maps that can be used to investigate areas that are
performing below the benchmark.

Keywords:     soil electrical conductivity, EC, GPS, yield, GIS, precision
agriculture, boundary line, yield goal, benchmark

MATERIALS AND METHODS

Measuring soil EC

     The two primary methods of measuring soil conductivity are by
electromagnetic induction (EMI) or by means of direct contact.  Contact methods
use at least four electrodes that are in physical contact with the soil to inject a
current and measure the voltage that results (Figure 1). On the other hand, EMI
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does not make contact but instead uses a transmitter coil to induce a field into the
soil and a receiver coil to measure the response. Research has shown that the two
methods produce similar results (Sudduth, et al., 1998).  The robust construction,
freedom from metal interference, and elimination of daily calibration are some of
the characteristics of the direct contact method that make it practical for
widespread use in agriculture.   The EC data used in this paper have been
collected with the direct contact method, using a Veris  mobilized soil EC
mapping system.  As the Veris cart is pulled through the field, one pair of coulter-
electrodes injects a current into the soil, while the other coulter-electrodes
measure the resulting voltage (Figure 1). Although the coulter-electrodes only
need to penetrate the soil a few centimeters, the signal arrays penetrate up to 80
cm deep into the soil.  The system records these conductivity measurements and
geo-references them using a GPS.  When used on 15 to 20m swaths at speeds up
to 12 k/h, the system produces between 40 and 100 samples per ha.  Two models
are available: the 3100 which measures two depths of EC simultaneously, 0-25
cm and 0-80 cm; and the 2000XA which has employs a single, adjustable array to
investigate soil depths up to 80 cm.

Figure 1.  Veris Technologies 3100 soil EC mapping systems; signal array shown
at right.

The relationship between soil EC and yield

     Because soil serves as the primary growth medium for crops, it is not
surprising that maps of soil physical properties and yield maps show visible
correlation.  Soil EC can serve as a proxy for soil physical properties such as
organic matter (Jaynes, et al., 1994), clay content (Williams and Hoey, 1987), and
cation exchange capacity (McBride, et al., 1990).  These properties have a
significant effect on water and nutrient-holding capacity, which are major drivers
of yield (Jaynes, 1995). The relationship between soil EC and yield has been
reported and quantified by others (Kitchen and Sudduth, 1996; Fleming, et al.,
1998;).  The soil EC and yield maps shown in Figure 2 are examples of fields
where these two layers of information exhibit similar spatial patterns.
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Figure 2.  Examples of EC and yield maps:  durum yield in Australia (left) and
soybean yield in Alabama (right).

RESULTS AND DISCUSSION

Correlation statistics

It is becoming increasingly common for precision agriculture service providers to
create scatter plots and calculate bi-variate regression correlation co-efficients for
paired data.  When this is applied to EC and yield data sets, as shown in Figure 3,
the results typically show statistically significant correlation.  The yield and soil
EC from this Michigan soybean field has a statistically significant (at the 1%
significance level) correlation co-efficient of .63.  Much of this is due to the
underlying soil property relationships that both data sets have in common, as
described above.  However, another factor is the density at which both data sets
are collected.  The virtually continuous-sensed, dense data collected with the
mobilized EC mapping system and from the yield monitor provides measured
data from similar locations in the field, reducing the errors induced by
interpolating sparser data.

Figure 3.  Scatter plot of yield and soil EC with R of .63.
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     The correlation analysis is an important first step in investigating the causes of
yield variability.  The visual similarities of the maps and the statistical correlation
of the data indicate that the patterns are not random.  One can observe trends in
the field, begin to ascertain which yield variances are caused by soil properties
versus other causes, and learn to what degree soil variability affects yield.
However, the relationship between soil EC and yield is more complex than
typically can be explained with bi-variate linear regression.  For example, the
relationship is rarely linear.  A model of EC-yield where yield peaks at the mid-
EC range due to an optimal balance of soil EC and hydraulic conductivity has
been proposed (Kitchen, et al., 1996).  Figure 4 shows data from a Michigan corn
field exhibiting this EC-yield relationship.

Figure 4.  Non-linear relationship between EC and corn yield in Michigan.

      Another factor that must be considered is that EC-yield relationships may
invert from year to year, depending on rainfall (Jaynes, et al., 1995). This same
phenomenon is one that must be dealt with when normalizing and averaging
multiple years of yield data (Kitchen, et al., 1999).

Boundary Line Analysis Method results

     An advanced method of analyzing yield with soils data is the boundary line
analysis (McBratney and Pringle, 1997; Kitchen et al., 1999).  This method
isolates the top yielding points for each soil EC range and fits a non-linear line or
equation to represent the top-performing yields within each soil EC range.  This
method knifes through the cloud of EC/yield data and describes their relationship
when other factors are removed or reduced.  Figure 5(a) is a scatter plot of a
Kansas wheat field which does not show a statistically significant relationship
when both data sets are correlated in their entirety.  It would seem that EC
explains less than 5% of the yield variability on this field.  Yet a relationship does
appear to exist at the upper yield limits.  This relationship is clarified using the
boundary line method which shows that EC explains over 50% of the yield-
limiting factors on this field Figure 5(b). The upper boundary represents the
maximum yield for each soil EC range.  While there may be a number of factors
causing yields to be lower than the boundary, the maximum yield for each soil EC
type has been established, for the crop year being considered.  This can be useful
in deriving yield goals as will be discussed later in this paper.
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Figure 5.  Scatter plot of EC and yield data from a Kansas field for (a) all EC and
yield data and (b) upper boundary line.

Median Analysis Method results

     This approach is similar to the boundary line analysis, except that it uses the
median yield for each soil EC range, rather than the upper boundary.  Yield data
can include anomalies caused by erroneous swath widths, uneven flow, and poor
yield monitor calibration.  These errors result in noise in the yield data, often at
the higher yield levels.  When the median, the 75th percentile, and the 95th

percentile are plotted for the same data, the noise at the upper yield levels is
evident (Figure 6).

Figure 6.  Comparison of 95th, 75th, and median EC/yield lines from an Indiana
soybean field.

Analyzing crop performance using the median as a benchmark

     The analysis methods described above identify yield differences across soil EC
ranges.  Yet within each soil EC type, there is important yield variability.   Not all
the top producing soils yield up to their potential, and some areas of the poorer
producing soils yield better than other areas.  This phenomenon isn’t readily
apparent because the dominant relationship between yield and soil type often
masks the subtle variations within soil types.
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     The median yield for each soil EC range can serve as a benchmark yield for
that soil EC type, and yields from the same EC range can be compared to it.
Figure 7 shows the median benchmark method applied to a 1997 Kansas wheat
yield also shown above.  The value for each pixel is derived by dividing its actual
yield by the median yield for each soil EC range.  In effect, this removes soil EC
from the equation and displays yield performance based on factors other than soil
EC and the soil properties it relates to.  The areas yielding significantly below the
benchmark represent areas to target for further investigation and action. High
yielding areas relative to the benchmark can be investigated to gain a better
understanding of the nature of ideal producing soils.  Among the possible causes
for under-performance are compaction, nutrient deficiency, weed pressure or
drainage.

Figure 7.  Median benchmark line plot and (a) areas of field yielding below
median benchmark and (b) areas yielding above median benchmark.

     By delineating the specific area where yield has been affected, and quantifying
the amount of loss, performance benchmark maps can be used to aid in
management decision regarding remediation.  A similar approach can be applied
to remote sensed crop images whereby crop scouting efforts can focus on areas
that show poor vigor relative to their soil EC type.

Using EC/yield data to derive yield goals

     Many growers are hesitant to establish site-specific yield goals using yield data
alone, even with multiple years of data, because of a concern that historical yields
aren’t strong enough proof of productivity.  Because of the severe economic
penalty for under-applying inputs such as nitrogen, they are unwilling to reduce
inputs on low-yielding areas until they have some confirmation that the low
yielding areas truly have lower yield potential, and are not being limited by a
factor which can be easily remedied.  It has been shown that 7 to 10 years of yield
data may be needed in order to establish yield goals effectively based solely on
yield maps (Lutticken, 1998), and other research has found that yields are not
stable after six years of monitoring (Colvin, et al., 1997).  Research into variable
rate application of nitrogen shows that including information about soil physical
properties, along with yield data improves economic returns to the practice
(Lutticken, 1998; Moulin, et al., 1998).
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     The relationship between soil EC and yield can be used to help derive site-
specific yield goals.  The yield map in Figure 8 comprises 3 years of normalized
yield data from one year each of wheat, grain sorghum and soybean production.
The soil EC map (Figure 8a) shows visual correlation to the yield map (Figure
8b), and statistically significant correlation as well (Figure 9a).  The upper yield
boundary line explains more than 96% of the yield limiting factors on this field
(Figure 9b).  Coupled with the grower’s knowledge of the eroded clay bank
represented by the higher EC values, this provides strong evidence of lower yield
potential in the higher EC soils on this field.   These data suggest that the yield
potential in the low EC soils is 25% higher than in the high EC soils, and a
variable rate nitrogen program could easily incorporate this in a recipe.

Figure 8.  (a) soil EC and (b) 3 years of normalized yield

Figure 9.  (a) correlation of EC and 3 years of normalized yields, and (b) upper
boundary limits on yield based on soil EC ranges

     Economic returns are higher for those initiating variable rate nitrogen, as
opposed to continuing with a uniform rate (Hopkins, et al., 1998).  Yet before
varying inputs based on site-specific yield goals it is important to investigate the
relationship between the soil type and the input to be varied.  For example, in the
field (Figure 8) above, one should be certain that the lower yields in the higher EC
soils were not the result of de-nitrification or a shallow soil which could actually
benefit from increased nitrogen (Barraclough and Weir, 1988).

CONCLUSIONS

     Soil EC and yield measurements are both densely collected data sets that
provide closely correlated information about crop production.  Beginning with
simple correlation statistics and proceeding to more advanced and rigorous
analysis methods, this relationship can help explain yields, identify under-
performing areas of the field, and help establish site-specific yield goals.
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